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Influence of wrinkled premixed-flame dynamics on 
large-scale, low-intensity turbulent flow 
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Premixed turbulent flame propagation is analysed under the assumptions of 
stationarity and transverse homogeneity by expansions for small values of the ratio 
of the turbulence intensity to the laminar burning velocity. For large Zel’dovich 
numbers, the effects of diffusive-thermal phenomena within the flame, gas expansion, 
buoyancy and Lewis and Prandtl numbers different from unity are taken into 
account under the constraint that turbulence scales are large compared with the 
laminar flame thickness. A general formulation is given, involving solutions through 
Fourier decompositions. Parametric results for turbulent burning velocities are 
obtained, and the evolution of components of turbulent kinetic energies through the 
flame is calculated. It is shown how buoyancy counteracts the tendency for gas 
expansion to increase transverse components of the turbulent kinetic energy, 
pressure fluctuations and vorticity generation across the wrinkled flame. Strong 
readjustments in components of the turbulent kinetic energy are shown to occur in 
the downstream hydrodynamic zone. It is established that, with the effects of the 
hydrodynamic zones fully taken into account, the flame can induce anisotropy in 
initially isotropic turbulence such that the final velocity fluctuations exhibit higher 
intensities in the longitudinal mode than in transverse modes, while the enhanced 
vorticity fluctuations are entirely transverse. 

1. Introduction 
Although there are many applications in which it is important to know effects of 

premixed flames on turbulent flows, the calculation of these effects from first 
principles is notoriously difficult. One of many lines of approach to the problem has 
been through a perturbation analysis in a small parameter 8 representing the ratio 
of a laminar flame thickness d t o  a turbulence scale 1 (Clavin & Williams 1979; 1982; 
Searby & Clavin 1986). Although limited by the range of validity of the expansions 
employed, this type of approach has the advantage of yielding predictions free from 
arbitrary modelling hypotheses. The present study adopts the formulation of this 
earlier work (Clavin & Williams 1982; Searby & Clavin 1986), but with the relative 
turbulence intensity 8, the ratio of a root-mean-square velocity fluctuation to  the 
laminar burning velocity, treated as an additional independent parameter, and 
addresses the evaluation of properties of turbulent flames that have not been fully 
explored in the earlier investigations. 

General characteristics of the flame structure obtained as an expansion in 8 are 
illustrated in figure 1. The laminar flame, of thickness d,  appears as a moving, 
wrinkled discontinuity in the analysis. The equation of motion of the discontinuity 
and the jump conditions across it depend on the structure of the laminar flame and 
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FIQURE 1 .  The arrangement of zones for the wrinkled laminar flame. 

can be characterized in general for present purposes through a few constant 
parameters. Use will be made here of results from an analysis by Aldredge (1990) 
which provides these equations and parameters fully. The analysis employs the 
theory of Clavin & Garcia-Ybarra (1983) but retains nonlinear terms of order S2 that 
they neglected. Their theory treats the specific heat and Prandtl and Schmidt 
numbers as constant for flames having reactants that can be characterized by a single 
diffusion coefficient and addresses one-step, Arrhenius chemistry having a large 
Zel'dovich number /3 (as defined in Williams 1985) but otherwise allows arbitrary 
variations in properties through the flame. Removal of these assumptions, for 
example by introducing more realistic chemistry, seems likely to usually leave the 
general forms of the jump and evolution equations unchanged but to modify the 
expressions for the parameters appearing therein (Clavin 1985). Thus there is reason 
to  believe that the formulation can be applied with some confidence to real flames. 

On each side of the discontinuity in figure 1 are regions of hydrodynamic 
adjustment, of characteristic length 1. Since the Mach number is low, the 
temperature, density and coefficients of viscosity remain constant in each of these 
regions. Variations of the flow field through these regions were not, addressed in the 
earliest studies along these lines (Clavin & Williams 1979, 1982) but have been shown 
to be of major significance to  the dynamics and stability of wrinkled laminar flames 
(Pelce & Clavin 1982). The analysis of Searby & Clavin (1986), on which the present 
work is based, is focused primarily on influences occurring in these regions of 
hydrodynamic adjustment. Since our development pertains largely to these regions, 
scalings will be introduced to render variables therein of order unity. 

Since the incompressible Navier-Stokes equations describe the flow in the 
hydrodynamic regions, the problem addressed essentially involves two Navier- 
Stokes fluids of different densities and viscosities with a moving boundary 
between them. The non-linearity of the inertial terms complicates Navier-Stokes 
analyses. Therefore, for analytical tractability Searby & Clavin (1986) restricted 
their attention to the linearized Navier-Stokes equations. We too introduce the 
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expansion for small amplitudes of velocity fluctuations, thereby restricting the 
analysis to weak turbulence (6 4 1). In  the terminology employed for grid turbulence, 
the applicability of the results is limited to turbulence in the final stages of decay 
(Batchelor 1956; Clavin & Williams 1979, 1982) if 6 is of order E or smaller. We may, 
however, formally avoid this restriction by taking E < 6. An objective is to consider 
how departures from the low-intensity limit begin. 

The well-known hydrodynamic instability of premixed laminar flames (Williams 
1985) predicted by Darrius and Landau restricts the problems amenable to our 
analysis. The approach applies only for flames that are intrinsically stable. 
Diffusive-thermal effects can introduce the needed stability only for wavelengths 
that are not too large. Another stabilizing influence is needed for longer wavelengths, 
and this is provided conveniently by buoyancy for flames propagating downward 
(PelcB & Clavin 1982). Therefore the analysis presumes that the combination of 
buoyant and diffusive-thermal effects serves to stabilize the hydrodynamic 
instability for all wavelengths. An excellent review is available (Clavin 1985) giving 
a more thorough discussion of these aspects. 

A stationary problem is considered in which the reactants flow upward in the E- 
direction (figure l).  Homogeneity in transverse directions is hypothesized in addition 
to the stationarity. The average location of the flame discontinuity is placed a t  E = 
0 in the laboratory frame, with the reactants flowing from z = - 00 and the products 
flowing to z = + 00. The scalings and formulation are summarized in the following 
section. Expansions, Fourier decompositions, and results concerning flame properties 
are then developed in subsequent sections. 

2. Formulation 
Since within the context of the analysis departures of velocities from laminar- 

flame velocities are small, it  is convenient to use the laminar burning velocity V 
measured in the unburnt gas and a representative turbulence scale 1 to non- 
dimensionalize distance and time coordinates. Thus Cdenotes time in units of 1/V, E 
the streamwise distance in units of 1, and p the two-dimensional transverse 
coordinate vector in units of 1. Streamwise and transverse velocities in units of V ,  in 
the laboratory frame, are denoted by u and u, respectively. The wrinkled-flame 
location (in units of 1 )  is defined by z = f(, t), which is assumed to be single-valued, 
thereby limiting the permissible extent of wrinkling (Williams 1985). The non- 
dimensional departure of the pressure from that of the undisturbed, planar laminar 
flame (located at z = 0 in the gravitational field) will be denoted by p ;  here the non- 
dimensionalization is achieved through division by p- V, where p- is the density of 
the fresh mixture. The conservation equations will be written in a coordinate system 
( x ,  y ,  t )  that moves with the flame; specifically, x = 3-J y = p and t = t; and the 
definition f(y, t )  =fly, t )  is introduced. The basic forms of the expansions to be sought 
are then 

(1) I u - u,+6U,+62u2+ ..., 
u - 6U,+62u2+ ..., 
p - Sp, + 62pz + . . . , 
f- Sf1+6zfi+ ..., 

where the functions of ( x , y , t )  multiplying the powers of the primary expansion 
parameter S also will depend on E and other parameters. The precise definition of 6 
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is taken to be the relative intensity that would exist a t  z = 0 if the flame were not 
lit. 

The complete conservation equations for flow in the hydrodynamic regions can be 
written as (Aldredge 1990) 

(3) 

-RiVf.  (4) 

Here V denotes the nondimensional transverse gradient involving derivatives with 
respect to components of y, and p is the departure of the hydrostatic pressure from 
the quantity -xRi/uo (which in the laboratory frame varies w-ith time and the 
transverse coordinates), where the Richardson number Ri is defined below. The 
Laplacian operator in the moving coordinates becomes 

a 2  a a 
ax2 ax ax A = [1+ IVf 1 2 ]  -+ V 2  -2Vf. V--Vy- .  

In general, the subscripts - and + will identify quantities evaluated a t  x = 0 
immediately on the upstream and downstream sides of the flame, respectively ; for 
properties such as the density, p,  the coefficient of viscosity, p, and the thermal 
diffusivity, 01, which remain constant throughout each hydrodynamic zone, these 
subscripts are equivalent to signifying evaluation in the burnt products leaving the 
turbulent flame (x- t  0 0 )  and in the fresh reactants entering it (x+- oo), respectively. 
In  the definition E = d / l ,  the thermal diffusivity of the unburnt mixture is employed 
to specify the thickness d ,  so that d = a-/V. The (constant) Prandtl number Pr = 
p/(pa) then appears in (3) and (4), since the Reynolds number based on V and the 
integral scale I is (ePr)-I. The turbulence Reynolds number, based on the fluctuation 
velocity and the integral scale, is then seen to  be of order S/s in this analysis (with 
Pr of order unity) and thus may be of order unity, for example. The definition 5 = 
p/p- has been introduced here, so that s = 1 in the fresh mixture, and s = 8 = 
p+/p- 2 1 in the burnt gas. Use has also been made of the zero-order solution, uo = 1 
in the upstream region and uo = R = p-/p+ 2 1 downstream. Finally, in (4) the 
Richardson number Ri = gl/P has been introduced, where g is the acceleration due 
to gravity ; this is found more convenient than its reciprocal, the Froude number, and 
it will be treated as being of order unity. Worthy of re-emphasis is the fact that (2), 
(3) and (4) are exact in that they have not involved any expansions. Also, it is noted 
again that u and v in these equations are measured in the laboratory reference frame 
and not in the moving coordinate system. 

The jump conditions to be applied a t  x = 0 are (Aldredge 1990) 

u+-u- = (B-  1) [ l  -#Vf I']-EE(R- 1) ( L - J )  [ ( V .  v) -  +VY] +O(P, d2, 2 8 ,  SF'), (6) 



Influence of wrinkled premixed Jlame dynamics in turbulent flows 49 1 

p ,  - p -  = 2e(R - 1) (L - J) [ (V - u)- + Vzf] + + E(R - 1) (1 --Pr - P / )  SVzf 

(9) af - = (u-- 1) - u- .Vf+€L [(V. 0)-  +vzf]-+pfl"o(s", €S2,  €26, sp'). at 
Appearing in (8) is the second Prandtl number, Pr', defined as Pr' = ( K + & ) / ( P O I ) ,  

where K is the coefficient of bulk viscosity. Additional, dependent parameters arise 
in (5)-(9) and are defined as 

do, 
J = I 0  SR 

1 + (R- 1) e 
as the non-dimensional Markstein length 

H = (2Pr- 1) (S-s) do, (104 1 and as 

where the variable of integration is the non-dimensional temperature, 8 = 
(T-T-)/(T+-!Z-). The Lewis number Le = a/D,  (where D ,  is the molecular 
diffusion coefficient) and the Zel'dovich number p are seen to occur only in the non- 
dimensional Markstein length. The origins and meanings of these evolution equations 
and jump conditions have been discussed in the literature (Pelce & Clavin, 1982 ; 
Clavin & Garcia-Ybarra 1983 ; Clavin 1985). The flame-structure hypotheses (and 
results of activation-energy asymptotics) affect only the formula for L ,  so long as 
there exists an inert preheat zone in the flame. The equations employed by Searby 
& Clavin (1986) are the linear versions of (2)-(9). 

In (6)-(9) the terms (V.u)-  and V2f represent flame stretch and flame curvature, 
respectively, these influences arise through the internal structure of the flame and 
therefore always appear multiplied by E and by one of the parameters in (10). In (9) 
the terms u -  Vf and IVf l2 represent transverse convection and flame tilt, respectively, 
both of which tend to reduce af/at through kinematic and geometric effects. The 
terms multiplied by R- 1 are gas-expansion effects that vanish in constant-density 
flows. Further discussion may be found in Pelce & Clavin (1982), Clavin & Garcia- 
Ybarra (1983), Williams (1985), Clavin (1985) and Aldredge (1990). 

3. Expansion to second order 

to order S2 gives 
The form of the expansions sought has been given in (1). Expansion of (2)-(5) up 

( I l a )  a% -+V.u ,  = 0, ax 
au au, - ap 
at ax ax u; 'A+- - --'+Eprs 

av, au, 
u;'-+- = 

at ax 
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at order 6 and 
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au2 av -+v.u, = '.Vf1, ax ax 

u,l%+avz = -vp2-uu, Ri Vf2 + A V f ,  aP + u;' (!!- u,) 2- u;'( ul - V) u1 at ax ax 

a0 + EPT s 2+ VZU, - EPT s [Z(Vf,). v + ( V 2 f i ) l L  (12c) (Z ) ax 

at order 6,. Adding the longitudinal derivative of (1 1 b )  to the transverse divergence 
of (1  1 c), then employing continuity, ( 1  1 a), gives a Poisson equation for the pressure 
P,, namely, 

a2p1 /aX2  + V2p, = -uol Ri V2fl. 

a2p,/ax2 + vzp, = - u;1 ~i vy, + N , ( X ,  y,  t), 

(13) 

(14) 

Similarly, solving (12) for p, gives 

where the nonlinear terms, denoted byN,(z,y, t )  are known from the solution of (11) 
and are given by 

N2(z,y,t) = Z(Vf,).V 2 +-v apl ax f1-U,' [ ( ! ~ ~ + ( v u l ) ~ ( v u l ) ~ + P ~ . ~ u l  ax 1 . 
(15) 

The symbol : denotes double contraction of the dyadics. Equations (13) and (14) may 
be viewed as convenient replacements for ( l la )  and ( l2a) ,  for example, if desired. 

Introduction of ( 1 )  into (6)-(9) and collection of like powers of S gives 

u,, = ul- - E(R - 1) ( L  - J) [ (V - u,)- + V"f,] + O(s2 ,  /3-'), (16a) 

u,+ = 

+ O ( E ' , / ~ - ' ) ,  (16b) 

PI+ 

+ E(R - 1 )  ( 1 -Pr -Pr') SVzfi + E(R - 1 )  HV2fl + ~ E P T ( X -  1 )  
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- ' f z  = u2- - vl-.vjl -;Ivflp+ O ( E ,  p - 1 )  J 
at 

at order if2. The first-order problem defined by ( 1  1) and (16) is linear and is solved 
conveniently by Fourier decomposition. The results may then be used to solve in a 
similar manner the second-order problem defined by (12) and (17). The ordering 
restrictions shown in (16) and (17) are dictated by those given in (6)-(9); in 
particular, all terms of order s have been excluded from (17) because some terms of 
order sS2 were neglected in (6)-(9). Terms of order B in (17) that would arise from the 
terms actually appearing in (6)-(9) can easily be included in (17), maintaining the 
same order of accuracy, if they are helpful in obtaining solutions. 

I t  should be noted that in the calculations made here only the development to 
leading order as defined by (11) and (16) is needed (cf. $5) .  The formulation of the 
second-order problem is added to provide a framework for future analyses of higher- 
order, nonlinear effects of the coupling between the flame front and the turbulent 
flow. In the Conclusion of this investigation we discuss, qualitatively, expected 
modifications to the leading-order theory from the non-linearities. 

4. Fourier decomposition 

it is convenient to introduce the Fourier decompositions 
Since the first-order problem is linear, transversely homogeneous and stationary, 

which render U,, Vl and Pl functions of x ,  w (frequency) and k (wavenumber) and Fl 
a function of w and k. The inverse transforms give 

[;] Fl 

The conservation equations to be solved at the first order may be taken to be (1 1 b ,  c )  
and (13), the transforms of which are 

-u,+- aUl - - - - + c P r s r s - , t 2 u l ) ,  ap1 
iw 
un ax ax 

- v + A  = -ikPl--RiFl+sPrs io aV ik 
uo ax Un 
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for x < 0 and x > 0, where k = Ikl. The transforms of (16), 

Ul+ = U1--e(R-l) ( L - J )  (ik. v--k2Fl), 

Vl+ = K-- (R- 1) ikFl + E -  (R - 1) (io Vl- - kwFl +ikRi Fl)  J 
R 

+ik(S-l)Ul- , (21b) 1 
J 
R 

Pl+ = P1-+2e(R- 1) (L-  J )  (ik- V1-- k2Fl) +eio- (B- 1) Ul- 

+ E(R - 1) [( 1 - Pr- Pr’) S-HI k2Fl + B 

+ [(Pr-Pr’) S-2PrI - , r:)} 
ioFl = Ul- + eL(ik- Vl- - k2Fl) (2 1 4  

are to be applied a t  x = 0. 

fluctuation velocities imposed from upstream, given by, 
Solutions to this linear problem are to be sought in terms of responses to 

(22) 
where Ve(k,w) is arbitrary, while U, is determined from the transform of the 
continuity equation, ( l l a ) ,  namely, 

(23 ) 
which gives Ue = k -  Ve/[w-icPr(w2+ k2)]. The subscript e refers to the excitation 
field in a transfer-function interpretation (Searby & Clavin 1986) ; the form shown in 
(22) has been selected to be consistent with the conservation equations applicable 
in the absence of the flame, with the io-term representing the turbulence and the E- 

term accounting for its decay, which is slow in the x-scale for small E. The solutions 
to (2) that approach (22) as x + - co and remain bounded as x+ 03 can be written 
in the form 

Pl = P-ekx-RiFl, x < 0; Pl = P+e-]”“-(Ri/R)F,, x > 0, (24a) 

Ul = Ue e-[i~+tPr(02+kz)lx v - ve e- l i~+tPr(~2+kZ) lx  
1 -  

aU,/ax = -ik. Vl, 

(24b) 
iw/R), x >  0, (244 

P4e) 
in which the quantities V,, P-, P+ and Fl are functions of k and w that are obtained 
by applying the jump conditions, (21), while U, is determined from the continuity 
equation, (23). Transforms of interest from these solutions are those of the wrinkled- 
flame displacement, F,, and velocity, iwFl, the velocity perturbations just upstream 
from the wrinkled flame, U- = U, - kP-/(k + iw) and V- = Ve- ikP-/(k + io), the 
velocity perturbations just downstream from the wrinkled flame, U, = U,- 
kP+/(k- iw/R) and V+ = V, + ikP+/(k- io/R), the pressure perturbations measured 
in the laboratory reference frame a t  z = 0, P- and P+, and the velocity perturbations 
in the final outgoing product flow, which have been denoted as U, and 5. 

U, = Ue e - [ i ~ + @ r ( ~ Z + k 2 ) 1 ~  - k p  -ekx/(k+iw), 
u = U, e-(~wlR+~PrS[(wlR~z+]c2112 -,I#+ e-kX/(k- 

x < 0, 

1 

V 1 -  - Vee-[iw+~p~(Wz+k2)1X-ikP-ek~/(k+i~), x < 0, ( 2 4 4  
V, = V, e - i i w l R + ~ P ~ S [ ( ~ I R ) ~ + k * l ~ ~  + ikp+ e- kx /( k-iw/R), x > O ,  
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Application of the jump conditions in (21)  to  the solutions in (24)  reveals that 

(25a) 

11 P- = (k+io)  [ w2 ~ ~ ' + e k [ B ( R - l ) ( L - - J ) +  - (R- R 1)J -2Pr (S -  1 )  

1 +ek2[H+S+2(L-J ) ]  

+ k2[2Pr(S - 1 )  - (R - 1)  L]  { (R - 1 )  L r i  + w 2 )  + Eiw 

R - l - e k [ ( R - 1 ) ( 2 L - J ) - 2 P r ( S - l ) ] )  
P+ = ( k + i w ) [ w  { R 

I + E ~ ~ [ H - ~ P T ( X - ~ ) + S + ~ R ( L - J ) ]  

-eiw{(R- l ) L ( k R i  - w2)/R + k 2 [ ( R  - 1 )  L + 2Pr(S- l ) ] }  - , 1: 
I 

+€k3{J(R+ l ) - ( L - J )  R ( R - 3 ) +  (R- 1 )  [2Pr(S-  l ) - ( S + H ) ] )  
+ iw [ k{ 2 - J (eR i )  [TJ} R - 1  - sk2 ["'"a+ ' )  + 2 ( L  -41 

\ vf = A(k ,  w )  ikUe +B(w)  Ve, 

R 
A ( k , w )  = (R-1) 

k - iw/R 
B(w)  = 1 + Eiw[J(R - 1)/R +Pr( 1 -SIR)],  

where the inverse transfer function D (the vanishing of which would provide the 
dispersion relation) is defined as 

+ 2iwk { 1 + skR [.- (' "I] w2[R+ 1 +Ek(R- 1 )  ( L - J ) ]  
R 

D ( k , w )  - 

+ k ( R - 1 )  --k [ 1+ F " l i ( i - J ) ] + ~ k 2 b +  ( 3 R - 1 ) L  R - 1  -2J+H]} .  (26)  

The primary purpose of introducing E > 0 and Ri > 0 into the problem has been to  
render the planar laminar flame stable, that is, to prevent the equation D = 0 from 
having any solutions for real, non-negative values of k that  give a negative imaginary 
part for w .  This function of E and Ri is served by (26) (Clavin & Garcia-Ybarra 1983; 
Clavin 1985; Searby & Clavin 1986), which is the same as the corresponding formula 
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of Searby & Clavin (1986). The appearance of e and Ri elsewhere in (25) therefore is 
of secondary interest, and these terms may be neglected in presenting results for 
large-scale turbulence in weak gravitational fields. 

5. Flame-speed calculations 
The non-dimensional turbulent flame speed, denoted here as 1 +uT, is the average 
velocity of the incoming flow measured in the laboratory reference frame. This may 
be evaluated a t  any value of z but is conveniently calculated at z = 0 from the 
Taylor expansion u- + (au/ax)- f + . . . . Use of stationarity and transverse homo- 
geneity in the ensemble average of (9) then gives 

(27) 
where the overbar denotes the average, which here may be calculated from 
knowledge of Vfl and of the two-point, two-time correlation function of the 
excitation field, defined as 

- 
UT = #vf12 + o(#, eS2, e28, SF'), 

gu(I~2-~iI ,  I l 2 - t i l )  ueGY1,  t l )  ue(~29 t 2 ) l S 2  (28) 
for transversely isotropic (axisymmetric) turbulence. 

It follows from (18) and (19) and the convolution theorem for Fourier transforms 
that if the Fourier transform of Vfl is given as the product of Ue and a transfer 
function Q, such that ikFl(k, w )  = Qvf(k, w )  UJk, w )  then 

J - m  J - m  

where qvf is the inverse Fourier transform of Q,. Squaring this result and taking an 
ensemble average gives 

in which the new variables y = y, -y, and t = t,-t, may be introduced and the 
Parseval-type identity 

S_mmdYl~~mdt14.t~Yl~tl~.~v~GY+Yl~ t + t J  = (2N3 dk l-m dw lQvf(k, w)12 e-i(wt+k-y) 

employed to obtain 

m 

J-a, J - m  

a t  the lowest order, where G,(k, w )  is the Fourier transform of g,(lyl, Itl). With Q, = 
ikFl/Ue obtained from (25a) and (26) for specified values of parameters, the right- 
hand side of (29) can be computed numerically once G,(k, w )  is Specified. Following 
Hinze (1975), the two selections 

were made, where r = IyI and 7 = It1 ; gu, characterizes flows with turbulence 
Reynolds numbers of order unity and gu, , is more appropriate for large turbulence 
Reynolds numbers (Hinze 1975). 

In  figure 2 (a) we illustrate the quadratic dependence of the burning-velocity 



0 

0.5 

0.4 

0.3 

UT 

0.2 

0.1 

0.2 0.4 0.6 0.8 1.0 
6 

I ,  4 ' I I I . I '  

0 0.05 0.10 0.15 0.20 0.25 
E 

0.30 

R 

FIGURE 2. (a) The dependence of the fractional increment, uT, in the turbulent burning velocity on 
(a) the relative turbulence intensity, 8, (6) the reciprocal, E, of the non-dimensional turbulence scale, 
and (c )  the unburnt-gas to burnt-gas density ratio, R. Each plot shows for two different forms, gu,, 
of (30) and qu,* of (31), for the autocorrelation function of the longitudinal component of the 
fluctuating turbulent velocity; stabilizing buoyancy factor (R- 1)ERi = 1 and PT = Le = 1 .  (a) 
R = 5, E = 0.05; ( 6 )  R = 5, 8 = 0.3; (c) E = 0.05, 8 = 0.3. 



498 R.  C .  Aldredge and F .  A .  Williams 
0.5 

0.4 

0.3 

UT 

0.2 

0.1 

0 
1 2 3 4 5 6 

R 
0.5 

0.4 

0.3 

UT 

0.2 

0.1 

0 
1 2 3 4 5 6 

R 
FIGURE 3 ( a , b ) .  For caption see facing page. 

increment on the turbulence intensity, implied by (27) and (29), by plotting uT 
versus 6, taking E = 0.05, R = Ri = 5,  Pr = 1, s = [1+ (R- 1) 0]$ and P(Le- 1) = 0. 
This form for s, corresponding to the viscosity varying as the square root of the 
temperature, is qualitatively representative of gases and is adopted throughout. For 
the selected value of E ,  the turbulent excitation field characterized by g u , l  is seen to 
give larger values of uT than that of gu+ 2. This is a consequence of Gu, (k, w )  being 
larger than G , , , ( k , w )  a t  the non-zero value of k a t  which D(k ,w)  in (26) has a 
minimum and of the fact that this value of k is of order unity when E = B* = 0.05. 
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FIGURE 3. The dependence of the fractional increment, uT, in the turbulent burning velocity on the 
density ratio R for various values of (a) the non-dimensional turbulence scale, L/E, (b) the Prandtl 
number Pr, (c) the Lewis number Le, and ( d )  the stabilizing buoyancy factor (R - 1 )  cRi; for 6 = 
0.3. (a )  ( R - 1 ) e R i  = 1 , P r  = L e  = 1 ;  ( b ) c =  0.05, ( R - 1 ) e R i  = 1,Le = 1 ;  (c) (R-1)eRi = 1 and the 
Zel’dovich number p = 10; ( d )  E = 0.05, P r  = Le = 1 .  

Thus in this case gu,l selectively excites mainly the least-stable wavenumbers. In 
figure 2 ( b ) ,  however, where to show the effect of turbulence scale a t  fixed intensity 
we vary B at R = 6, Pr = 1,  P(Le- 1 )  = 0 , s  = 0.3 and the Richardson number based 
on the flame thickness &i = 0.25, we see that gu,z gives slightly larger values of uT 
when E is sufficiently far from the neighbourhood of E * ,  mainly because the peak of 
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FIGURE 4. The dependence of the root-mean squares of the longitudinal velocity fluctuation in the 
laboratory frame, of the flame displacement and of the flame velocity on the density ratio R for 
6=0.3,s=0.05, (R- l ) sRi=  1 a n d P r = L e = l .  

6. Turbulence-energy calculations 
An influence of premixed flames on turbulent flows is the damping or amplification 

of turbulent kinetic energy across the flame and in the upstream and downstream 
hydrodynamic regions of the flow by the feedback of the flame-front dynamics on the 
upstream turbulence (Pelce & Clavin 1982; Searby & Clavin 1986; Clavin 1985). Here 
we define q ( x )  as the total turbulence kinetic energy at  the lowest order in 6, which 
has the longitudinal contribution q,(x) and the total transverse contribution q,(x) ; 
q = q, +q,. Through a procedure that is entirely analogous to that by which (29) is 
derived, it is found that 

J - m  J - m  

where the symbol . in (33b) denotes the inner product of two vectors in complex 
space. It can then be shown, for example by considering the right-hand side of (33a) 
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as representing the sum of contributions associated with purely longitudinal and 
purely transverse fluctuations, that 

q,W = tlo1l - - ~ S 2 ~ ~ ~ d k ~ ~ ~ d w ~ ~ , ( k , ~ , x ) G , ( k , w ) + C , ( k . ~ r . x ) G ~ ( k , w ) ~  2 (34) 

for a turbulent excitation field which is isotropic, where G ,  and G ,  are Fourier 
transforms of the correlation functions for longitudinal and transverse exciter 
fluctuations, namely g ,  given in (28 )  and 

respectively. 
Using ( 2 5 )  and (32)-(34), we can plot q,qu and $J, (representative of the energy 

associated with one of the transverse components of velocity fluctuation) versus x ,  
taking G , ( k , w )  as defined in (30) and 

gu(lYz-Y1lj l t 2 - t I l )  = oe(yl,t,).t)edvz,t2)/S2 (35) 

G , ( k ,  w )  = (32/7c4) (k2 + 2w2) e-4(f2+w2)/n, (36) 
which is the spectrum for the transverse fluctuations in the fully isotropic turbulence 
corresponding to g , , ,  (Hinze 1975); (36) is the only choice for G ,  consistent with the 
assumption of an isotropic excitation field with this G , ( k ,  w ) .  In the plots, which are 
shown in figures 5-7, the kinetic energies are normalized by the total excitation 
energy, 

m CC 

qe(x) ~ 2 ~ - ~ d k S _ ~ d w l u l / l i . l 2 G u ( k , w ) ,  (37) 

where U, is given by (as), and the notations total = q(x)/q,(x) ,  longitudinal = 
q,(x) /q , (x) ,  transverse = q,(x) /2qe(x)  and excitation = qe(x) are employed. Sufficiently 
far upstream where flame-induced effects on the flow are negligible, total = 1 and 
longitudinal = transverse = $. This state is represented by the horizontal dashed lines 
in the figures. Turbulent kinetic energy decays through viscous effects on the scale 
x / e ,  and this is shown in the curve labelled excitation in figure 5 ,  where we have taken 
E = E * ,  S = 0.3, R = 1 and Pr = Le = (R-  1) &i = 1.  None of the other curves depend 
on the value of 6. 

In  figure 5 the gas-expansion effects on the jump conditions across the flame have 
been removed by putting R = 1, but the gravitational effects have been retained by 
keeping (R- 1)  &i non-zero. When this is done, the extent of the hydrodynamic 
adjustment region is symmetric about x = 0 ;  it is found to extend over about three 
integral lengthscales on each side of the flame, as may be seen in figure 5.  The extent 
of flame fluctuation about z = 0 is much smaller, however; f ’  x 0.05 a t  6 = 0.3 for 
R = 1,  according to figure 4. The non-monotonic modification of kinetic energies 
through the upstream and downstream hydrodynamic zones, in this case, is due to  
the coupling of gravity-induced oscillations with the longitudinal excitation field. 
This is shown clearly in ( 3 3 ) ,  where neglecting the slow viscous decay we see that 
modification of q, with increasing x is a result of competition between the growth or 
attenuation of the two terms on the right-hand side of (33b). The first term, 
associated directly with gravitational effects (see (25 )  for R = l ) ,  monotonically 
increases (decreases) with increasing x in the region x < 0 (x > 0) ,  while the second 
term, associated with the coupling between gravitational oscillations and the 
excitation field, may increase or decrease depending on the phase of the excitation 
function B ( k ,  o, x), which varies linearly with x. 

Physically, gravity-induced amplification occurs when gravity-induced oscillations 
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X 

FIGURE 5. The evolution of the relative turbulent kinetic energies and (for 8 = 0.3) pressure 
through the hydrodynamic zones for E = 0.05, R = 1, (R-  1) ERZ' = 1 and Pr = Le = 1. 

are in phase with excitation fluctuations over a significant portion of the wavenumber 
and frequency spectrum, and the extent of this resonance varies with x. Since the 
effect of gravity is to resist motion of the flame about x = 0 and at the lowest order 
a f l / a t  = ul- = ul+, longitudinal velocity fluctuations are smallest at  the flame front. 
By mass conservation the effects of gravity on longitudinal and transverse 
fluctuations are opposite, so that q, tends to be largest near the flame, as seen in figure 
5.  The discontinuous decrease in q,, across the flame for values of R near unity, seen 
in figure 5,  is the opposite of the well-known (Clavin & Williams 1982) effect of gas 
expansion on the transverse velocity fluctuations. The cause of this discontinuity can 
be seen by neglecting the highest-order viscous terms in (16b) to observe that for 
R = 1 the damping of ul(y, t )  across the flame is due primarily to the conservation of 
tangential momentum and resulting streamline deflection, when the flame is tilted, 
associated with a differenceingravitational potential across the flame. Since (16 b )  
gives at  the lowest order J u 1 + 1 * - ~  = 2J[(R- 1) &i] ul--Vfi, the decrease in q, 
across the flame is a consequence of u,- being out of phase with Vfl on the average 
through the effect of gravity on transverse fluctuations discussed above. The 
decrease in total across the flame shown in figure 5 is a result only of the decrease in 
transverse since there is no change in u1 across the flame in this case (see ( 1 6 ~ ) ) .  

Although these gravity effects are enhanced with gas expansion, there is an 
additional, destabilizing effect for R > 1 resulting from the hydrodynamic instability 
associated with streamline deflection in the hydrodynamic zones (Williams 1985 ; 
Clavin 1985). In figure 6(a)  we take R = 4 with the same values for the other 
parameters as in figure 5 and find that the extent of flame-induced damping or 
amplification of q, and q, upstream of the flame is reduced, while the extent of 
modification in the downstream adjustment zone is increased. Across the flame q,, is 
strongly amplified, primarily because the tendency toward hydrodynamic instability 
produced by the second term on the right-hand side of (16b) dominates the damping 
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F I G ~ E  0. The evolution of the relative turbulent kinetic energies and (for 6 = 0.3) pressure 
through (a) the hydrodynamic zones and (b )  the downstream hydrodynamic zone, for E = 0.05, 
R = 4, (R-1)ERi = 1 and Pr = Le = 1. 

effect of gravity produced by the term involving RiVf,. Within the downstream 
hydrodynamic adjustment zone there is a rapid transfer of turbulent kinetic energy 
from transverse to longitudinal fluctuations and an associated dip in the total kinetic 
energy. Slow decay of the relative longitudinal energy occurs because qu has a faster 
viscous decay rate than that of qe for this selection of parameters (see figure 6b).  The 
value off’ is approximately 0.25 at 6 = 0.3 for this case, according to figure 4; the 
pressure profiles will be discussed later. 
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FIGURE 7. The evolution of the relative turbulent kinetic energies and (for 6 = 0.3) pressure 
through (a) the hydrodynamic zones and (a) the downstream hydrodynamic zone fore = 0.2, R = 
4, ( R - l ) c R i  = 1 and Pr = Le = 1. 

In  figure 7 (a)  we take s = 4s* and the same values for the other parameters as in 
figure 6 in order to investigate the effect of smaller turbulence lengthscales. Here we 
see that the extent of flame-induced modification of qu and q, in the upstream and 
downstream hydrodynamic adjustment zones and in the jump of q, across the flame 
is reduced in comparison with figure 6 because of the stabilizing diffusivethermal 
effect (Williams 1985) which is larger than the effects of gravity and hydrodynamic 
instability at large wavenumbers. Beyond the downstream adjustment zone the 
normalized energies continue to increase with x because qu and q, have slower viscous 
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FIQURE 8. The dependences of the relative fluctuation intensities of longitudinal and transverse 
velocity components on the density ratio R ,  just downstream from the flame and in the final flow, 
for E = 0.05, (R-1)eRi  = 1 and Pr = Le = 1 .  

decay rates than that of qe for this selection of parameters (see figure 7 b ) ,  the 
turbulence scales induced by the flame having been predominantly larger than those 
of the excitation field. 

In figure 5 it is seen that with R = 1 the initially isotropic turbulence eventually 
returns to isotropy after passing through the flame. However, figures 6 and 7 show 
that the anisotropy produced by the flame continues to persist when gas expansion 
is present. Although the jumps across the flame generate this anisotropy in 
transverse fluctuations, the adjustments in the downstream hydrodynamic zone 
transfer the intensity to longitudinal fluctuations, so that the final anisotropy (far 
downstream from the flame) exhibits higher longitudinal intensities than transverse 
intensities when R > 1. The reason for this final anisotropy in velocity fluctuations 
beyond the downstream adjustment zone is the production of vorticity by the flame 
in transverse directions, which results in larger vorticity intensities in transverse 
directions than in the longitudinal direction (refer to $7) .  The generation of 
fluctuations of velocity and vorticity by the flame in transverse directions results in 
a shorter characteristic lengthscale for longitudinal fluctuations than that for 
transverse fluctuations. However, the existence of pressure-strain correlations and 
the fact that the flame-generated vorticity is conserved through the downstream 
region results in a changing characteristic lengthscale for longitudinal fluctuations 
causing it to become longer than that for transverse fluctuations far downstream 
from the flame. In figure 8 we investigate the effect of the magnitude of R on the final 
anisotropy. Taking the same values for the other parameters as in figure 6,  we plot 
the longitudinal and transverse components of the normalized turbulence energy, 
which are based on U, and V+ respectively at the downstream side of the flame and 
on U, and V, respectively far downstream from the flame when viscous decay is 
neglected (see (24c) and (24e) ) .  As R is increased we observe that the energy 
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associated with transverse fluctuations based on V, remains nearly constant, except 
near the stability limit, while the longitudinal component of energy based on U, 
increases rapidly. Therefore, the final total turbulent kinetic energy (with viscous 
decay removed) and extent of anisotropy in longitudinal fluctuations both increase 
with increasing R. We have found this effect of gas expansion to be qualitatively 
independent of the parameters Pr, Le, Ri and E ,  and it may therefore be considered 
to be of general validity in the limit of large-scale turbulence. 

Although earlier studies have not addressed the variations of turbulent kinetic 
energies in the hydrodynamic zones, shown in figures 6 7 ,  consideration has been 
given to the jump in turbulent kinetic energy across the flame with body-force and 
diffusivethermal effects neglected (Clavin & Williams 1982). It was pointed out in 
Clavin & Williams (1982) that the flame-tilt effect, which is central to the 
hydrodynamic instability, enhances the turbulent kinetic energy in transverse 
components to such an extent that the total turbulent kinetic energy of the fluid per 
unit mass, and even per unit volume, increases when the fluid crosses the flame if R 
is sufficiently large. However, because of a sign error in the application of a Taylor 
hypothesis, (40) and (41) of Clavin & Williams (1982), giving expressions for these 
changes, are incorrect in their second-order terms accounting for finite R. There are 
corresponding errors in subsequent results quoted in that paper for relative 
turbulence intensities in transverse fluctuation ; in particular, in the present notation, 
for turbulence that is isotropic just upstream from the flame the ratio of a transverse 
component of intensity to the longitudinal component is [I + (R- 1) (R-2)]:, rather 
than [l +R(R- 1)]4, which now achieves a minimum at R = instead of increasing 
monotonically with R for R > 1. An important result of the present analysis is that 
the anisotropy at  large R, exhibiting a large ratio of transverse to longitudinal 
intensities just downstream from the flame, is transformed into a large ratio of 
longitudinal to transverse intensities farther downstream as the flow traverses the 
downstream hydrodynamic zone. 

In addition to turbulence energies, the calculation of pressure fluctuations is of 
interest. It may be shown that at the lowest order in 6 the pressure field that would 
be measured in the laboratory reference frame is given by the Fourier inverse of 
P- ekx for x < 0 and of P+ e-kx for x > 0. The root-mean-square pressure fluctuations 
measurable in the laboratory frame are therefore given by p' = [(pl + Ri fJ2];, z < 0, 
and p' = [(p,+Rifl/R)2]i, x > 0 (see (24a)), and their variations through the 
hydrodynamic flow field are shown in figures 5-7. We observe that the flame induces 
pressure fluctuations which are maximum near the flame, decreasing to zero in either 
direction away from x = 0. In crossing the flame the flow experiences an increase in 
its pressure fluctuation, like its transverse velocity fluctuations, when R is not small 
(see figure 6a). In figure 9 we plot p' and the root-mean-squares of the longitudinal 
and transverse velocity fluctuations at  the flame, as well as the root-mean square 
pressure fluctuation in the moving coordinate system at the leasing order in E 
denoted as pt  = (z);, as functions of R. The divergence of the latter as R -+ 1 is a low- 
frequency gravity-wave effect, as may be seen from (24a) and (26); otherwise this 
curve tends to follow that of p:. Values of all quantities on the upstream side of the 
flame are seen to be affected very little by increasing R for stable flames, while on the 
downstream side pressure and transverse velocity fluctuations increase strongly with 
increasing R, the longitudinal velocity fluctuations being much less sensitive. The 
vorticity curve in figure 9 is discussed in the following section. 

17 FLM 228 
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FIGURE 9. The dependences of the root-mean square pressure, velocity and vorticity fluctuations 
a t  the flame on the density ratio R for 6 = 0.3, E = 0.05, ( R -  1) E R ~  = 1 and Pr = Le = 1. 

7. Turbulence-vorticity generation 
Turbulence in the hydrodynamic regions in general will have components of 

vorticity 9, and 9,, in the longitudinal and transverse directions, respectively. 
Cartesian vorticity components are 

where v and w are the components of the velocity vector v in the transverse directions 
y and z, respectively, and 9, and 52, are, similarly, components of the transverse 
vorticity vector 9,,. The root-mean-square vorticity fluctuations a:, 9; and 9; are 
obtained from knowledge of the Fourier transforms of 52, and QY, denoted as QW and 
Q,, respectively. Similar to the above calculations of turbulent flame speed and 
turbulent kinetic energies (for example, see (29)), the square magnitudes of these 
transforms are used to give ensemble-average square vorticity fluctuations. 

Taking the Fourier transform of (38) and then using (24b)  and (24d) ,  we find for 
the flow upstream of the flame that 

9, = (ik, We-ik, V,) Ce(z), 

52, = ikz C,(X) U,- [ ~ C , ( X ) / ~ X ]  We, ] x < o ,  (39) 

Q k z  = -{ik, Ce(z) ue-[ace(x)/axl Vel, 
where C,(x) = e-[iw+ePr(we+k2)lz, k, and k, are the components of the wave-number 
vector k, and Ve and We are the components of the transverse excitation-field vector 
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V,, Equation (39) reveals upon comparison with (22)  that there is no flame-induced 
modificatiop of vorticity upstream from the flame ; the upstream vorticity field 
everywhere equals the excitation vorticity field, as it must according to the equation 
for vorticity transport. For the downstream hydrodynamic region, using (24c), (24e)  
and (26e) ,  we find 

9, = (ik, We-ikz V,) C,(x) ,  

9, =ik,C,(~) U,- [~C,(X)/~X] W,, 1 x > o ,  (40) 

where C,(x) = e - ~ i W / R f ~ ~ r S r ( ~ ~ R ) z + ~ a J ~ Z .  Equation (40) shows that there is of course no 
generation of vorticity in the downstream hydrodynamic zone (since the square 
magnitudes of these transforms vary only on the long viscous-decay scale x / E ) .  
Vorticity may, however, be produced or consumed across the flame as a result of the 
baroclinic coupling between density and pressure gradients that occurs in the flame 
and is attributed to the cross-product of Vuo and V p  in the vorticity equation, the 
overbar indicating laboratory coordinates (z,g,~). Since at  the lowest order in S 
density gradients in transverse directions are zero, the components of this cross- 
product in the longitudinal direction is zero, and it is found (compare the first 
relations of (39) and (40)) that no modification of the longitudinal component of 
vorticity across the flame occurs at  this order. The rates of viscous decay downstream 
from the flame are different from those upstream, however, when R =I= 1 or S #= 1 ,  as 
may be seen by comparing C J x )  with C,(x). The components and SZ; will generally 
be modified across the flame and are the subject of the following investigation. 

Since the vorticity field upstream is equal to the excitation vorticity field which we 
assume to be isotropic, 9; = 52, = 9; for x < 0, either 52, or 9; may be used to 
characterize the intensity of vorticity in this region. Taking the square magnitudes 
of Okv and QkZ given in (39) we find, using (22)  and (23), 

Qkz = -{ik, CJX) u,- [ a c J x ) / a x ]  V,>, 

1QkY12+ I9*,12 = [(k2+2w2) l u , ~ 2 + w 2 ~ ~ ~ l 2 ] I C e ( x ) ~ 2 ,  x < 0. (41) 
Upstream of the flame the root-mean-square vorticity fluctuation in any direction 9; 
is then given by 

2[9;(x)]2 = %(z) + @ ( x )  = 6 2  J:m dk J:m d w  [ (k2+2w2)  G,(k, w )  +02CT,(k, o)]  I C , ( X ) ~ ~ .  

(42)  
Taking G,(k ,w)  from (30) and G,(k ,w)  from (36), we then obtain 

[Q;(x)]2 = 2 8 2  dk /ym dw(k4 + 3k2,$ + 2 ~ 4 )  e-4(kz+& ( l + ~ ~ r z l 2 ) / 7 f  Y (43) 

which may be evaluated analytically to give 

For the downstream hydrodynamic zone, (40) gives 
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respectively, each evaluated a t  x = 0. Integrating over (45) we obtain an expression 
for 52’ = Q& = 52; for x > 0, namely 

2[Q’(2)]2 = @(x) + q ( 2 )  = 62 J;=’ dk  J;m dw w I U f l ~ ,  - C+AI2 

-2(Uf/U,-C+A).(C-C+B)IG,(k,w)+ IC+12G,(k,w)}ICf(x)12. (46) 

Equation (46) enables the intensity of transverse components of vorticity fluctuation 
downstream to be calculated and compared with those upstream. 

For the selection of parameters E = 0.05, (R- 1 )  (ER) = 1, Pr = Le = 1 and 6 = 0.3 
- and with the expressions for G ,  and G, used in (43) - the right-hand side of (46) was 
calculated numerically. In  Figure 9 the root-mean-square transverse vorticity 
fluctuation at  the downstream edge of the flame 52: is plotted versus R. The 
longitudinal component remains constant, independent of R, equal to the value of 
that for the excitation field at  x = 0, G?; = 0.42 according (44). Therefore the 
vorticity generation or reduction by the flame is expressed entirely in terms of a>, 
the representative behaviour of which appears in figure 9. It is found for these values 
of parameters that 52; < 521, when 1 < R 5 2.75, that is, at the smaller density ratios 
the flame reduces the root-mean-square vorticity fluctuations slightly. However, in 
the range of practical density ratios, R 2 2.75, there is appreciable generation of 
vorticity fluctuation by the flame, and this generation of 52; increases strongly with 
increasing R, as do p ;  and v; in figure 9. This generation is associated with a 
correlation between a transverse vorticity component and the component of the 
transverse pressure gradient orthogonal to it ; the vorticity gives rise to bulges of the 
flame sheet, and through Bernoulli’s principle the pressure tends to be higher in 
upstream-pointing bulges than in downstream-pointing bulges, thereby effecting the 
correlation. 

Figures 6 ( b )  and 7(b) ,  for example, have shown the interchange of longitudinal and 
transverse velocity fluctuations in the downstream hydrodynamic zone. The pressure 
effects that lead to this interchange are absent in the equation for vorticity transport, 
and therefore the vorticity generated in transverse components remains in transverse 
components and is not transferred to longitudinal components. I11 the downstream 
hydrodynamic zone all components of vorticity fluctuations simply decay at  the rate 
associated with Cf(x). At realistic values of R, therefore, while the far-downstream 
velocity fluctuations are predominantly longitudinal for an incoming isotropic 
turbulence, those of vorticity are predominantly transverse. 

8. Conclusion 
We have presented an analysis of the feedback between a stable, wrinkled 

premixed flame and an incoming weakly turbulent flow under conditions of 
statistical stationarity and transverse homogeneity and for an arbitrary value of the 
gas-expansion ratio R. This analysis extends the work of Searby & Clavin (1986) to 
the calculation of flame-induced modifications of turbulence properties in the 
upstream and downstream hydrodynamic regions of the flow and to an investigation 
of the effects of gas expansion and turbulence lengthscale on these modifications. 

Parametric dependences of turbulent burning velocities on turbulence intensity, 
turbulence lengthscales, gas expansion, gravitational strength, and Lewis and 
Prandtl numbers have been obtained, showing effects of these parameters that are 
comprehensible on physical grounds. The variations in components of turbulent 
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kinetic energies through upstream and downstream hydrodynamic zones and across 
the flame have been calculated, indicating substantial modifications in turbulent 
kinetic energy components through the hydrodynamic zones, often resulting in 
nearly complete transfer of fluctuating energy from transverse to  longitudinal modes 
within the downstream hydrodynamic zone. Root-mean-square pressure fluctuations 
were shown to be maximum near the flame and a t  realistic density ratios to  be larger 
in the burnt gas than in the fresh mixture, like the intensity of transverse velocity 
fluctuations a t  the flame. The vorticity field in the upstream hydrodynamic zone was 
shown to be uninfluenced by flame dynamics, that is, to be everywhere equal to  the 
incoming vorticity field in this region, and the longitudinal component of vorticity 
was found to be unmodified across the flame, but the root-mean-square transverse 
vorticity fluctuation is significantly increased by the flame a t  realistic values of the 
gas expansion ratio. In  addition to these main results, many other details of the 
influence of the flame on the turbulence were derived. 

This analysis sets the basis for future studies of effects of nonlinearities in 
premixed turbulent flame propagation. It is expected that nonlinear corrections will 
reduce the rate of increase of the turbulent burning velocity with increasing 
turbulence intensity (see figure 2a), since this rate is known to be constant at large 
intensities (Aldredge 1990; Williams 1985). It is desirable to ascertain the effects of 
nonlinearities on the conservation of vorticity through the hydrodynamic adjust- 
ment zones, such as vortex stretching, which might alter the extent of energy 
transfer between components of velocity fluctuation downstream from the flame. 
Furthermore, by retaining weak nonlinearities in the analysis, weakly unstable flame 
propagation may be investigated for the practically interesting regime of order-unity 
gas expansion. Previous analyses of flame propagation in unstable regimes have all 
restricted attention to the case of small gas expansion. 
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